Electrical modes in scanning probe microscopy.
نویسندگان
چکیده
Scanning probe microscopy methods allow the investigation of a variety of sample surface properties on a nanometer scale, even down to single molecules. As molecular electronics advance, the characterization of electrical properties becomes more and more important. In both research and industry, films made from composite materials and lithographically structured elements have already reached structure sizes down to a few nanometers. Here, we review the major scanning probe microscopy modes that are used for electrical characterization of thin films, that is, scanning conductive force microscopy, Kelvin probe force microscopy and scanning electric field microscopy. To demonstrate the possibilities and capabilities of these modes, reference samples were fabricated by means of focused ion beam deposition and analyzed using the described methods. Furthermore, two upcoming modes are presented that are based on: i) local current measurements while the SPM-cantilever is excited into torsional vibrations, and, ii) changes in a backscattered microwave that was coupled into a scanning probe microscopy-cantilever. The scanning-probe-based electrical modes are applicable for studies of functional layers used in soft matter electronic devices under realistic environmental conditions.
منابع مشابه
Scanning hall probe microscopy technique for investigation of magnetic properties
Scanning Hall Probe Microscopy (SHPM) is a scanning probe microscopy technique developed to observe and image magnetic fields locally. This method is based on application of the Hall Effect, supplied by a micro hall probe attached to the end of cantilever as a sensor. SHPM provides direct quantitative information on the magnetic state of a material and can also image magnetic induction under a...
متن کاملScanning hall probe microscopy technique for investigation of magnetic properties
Scanning Hall Probe Microscopy (SHPM) is a scanning probe microscopy technique developed to observe and image magnetic fields locally. This method is based on application of the Hall Effect, supplied by a micro hall probe attached to the end of cantilever as a sensor. SHPM provides direct quantitative information on the magnetic state of a material and can also image magnetic induction under a...
متن کاملAn overview of scanning near-field optical microscopy in characterization of nano-materials
Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...
متن کاملDamping behavior of bent fiber NSOM probes in water
The damping behavior of bent fiber near-field scanning optical microscopy !NSOM" probes operating in tapping mode oscillation is investigated in air and water. We show that the significant drop in probe quality factor Q, which occurs at the air-water interface, is due to meniscus damping. As the probe is immersed in water viscous damping adds to the meniscus damping. Damping effects which lead ...
متن کاملAn overview of scanning near-field optical microscopy in characterization of nano-materials
Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Macromolecular rapid communications
دوره 30 14 شماره
صفحات -
تاریخ انتشار 2009